
A Synthesize Approach: Modeling for Java Security

Ms.Shilpi Singh
School of Computer

Science
Lingaya’s University

Faridabad, India

4. shilpi@gmail.com

Sahil

B.Tech in Computer
Science (4

th
 year)

School of CSE
Lingaya’s University

Faridabad, India

sahilmd17@gmail.com

AkshayDalal

B.Tech in Computer
Science (4

th
 year)

School of CSE
Lingaya’s University

Faridabad, India
akshay.charra@gmail.com

Rohan Tanwar

B.Tech in Computer
Science (4

th
 year)

School of CSE
Lingaya’s University

Faridabad, India
rohantanwar94@gmail.com

Abstract—Java is a programming language which is developed

by Sun Microsystems. Sun Microsystems claim that Java has a

number of advantages over traditional programming languages. One

of the benefit is the ability to execute un trusted programs in a secure

environment. This paper investigates the problems that would arise

when running un trusted programs. It then takes an in depth explore

the answer provided by the Java security model in theory furthermore

as in current implementations and calculates their potency and

adaptability for present and future ranges of application.

Keywords—security,java,sandbox,JVM,bytecode,applet,type-

safe,garbage collector,code,verifier

1.INTRODUCTION

Security is the way by which organizations and individuals protect

their physical and intellectual property from all types of steal and

attack. Even though security concerns are not new, there is re-

energized awareness in the entire area of security in computing

systems. The reason behind this is today's info. Systems have

become the storehouses for both personal and corporate properties

and networks are providing new levels of admittance for users.

Therefore, new opportunities for unauthorized interaction and

possible misuse may arise. In order to fight possible security threats,

users need programs they can trust upon. Also, developers are

looking for a development platform that has been deliberate with

built-in security capabilities. That’s why the Java comes in.

Actually, Java is designed for network-based computing, and

security is a vital part of Java’s design[8][9].

Java security model is appropriately outlined by mistreatment the

figure of the Sandbox [1][2]. The sandbox contains variety of

collaborating system elements, move from security managers that

execute as some of the applying, to security measures designed into

the Java Virtual Machine (JVM) and therefore the language

itself[10]. Dr. Li Gong has categorised the Java security model into

four layers, which are [1]:

1. Java language is designed to be type-safe, and easy to use.

Java features such as garbage collection automatic memory

management, and range checking of strings and arrays are

examples of how the language helps the developer to writes

after code.

2. Compilers and a bytecode verifier check only genuine Java

code is executed. The bytecode verifier, together with the

Java virtual machine, assurances language type safety at

runtime.

3. A class loader describes a local namespace, which is used

to confirm that an untrusted applet cannot interfere with the

running of other Java programs.

4. Access to vital system resources is intermediated by the Java

virtual machine and is checked inadvance by a Security

Manager class that restricts to the minimum the actions of un

trusted code.

Key Features that Make Java More Secure than

Other Languages[6]-

 Java’s security model [7]

Java’s security model is meant to assist and shield users

from hostile programs downloaded from some un trusted

resource at intervals a network through “sandbox”. It

allows all the code to run within the sandbox exclusively

and avoids numerous activities from un trusted resources

together with reading or writing to the native disk, making

any new method or maybe loading any new dynamic

library whereas occupation a native methodology.

 No use of pointers

C/C++ language uses pointers, which can cause

unauthorized access to memory blocks once alternative

programs get the pointer values. in contrast to standard

C/C++ language, Java never uses any kind of pointers. Java

has its internal mechanism for memory management. It

solely provides access to the data to the program if has

suitably verified authorization.

 Exception handling concept

The concept of exception handling allows Java to capture a

series of errors that helps developers to get eliminate the

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

29

IJSER © 2016
http://www.ijser.org

IJSER

mailto:sahilmd17@gmail.com

chance of crashing the system.

o

 Defined order execution

All the primitives are defined with a predefined size and every

one the operations are defined in a very specific order of

execution.

Therefore, the code executed in numerous Java Virtual Machines

won’t have a distinct order of execution.

 Bytecode is another factor that creates Java safer

Every time a user compiles the Java code, the Java

compiler creates a class file with Bytecode, that is tested by

the JVM at the time of program execution for malicious

files.

 Tested code re-usability

Object encapsulation delivers support for the concept of

“programming by contract”. this enables the developers to

re-use the code that has already been tested whereas

developing Java enterprise applications.

 Access control functionality

Java’s access-control functionality on variables and

methods inside the objects give a secure program by

preventing access to the important objects from the

untrusted code.

 Protection from security attacks

It permits developers to declare classes or methods as

FINAL. we have a tendency to all recognize that any class

or method declared as final can’t be overridden, that helps

developers to guard code from security attacks like making

a subclass and replacing it with the original class and

override methods.

 Garbage collection mechanism

It aids a lot of to the safety measures of Java. Garbage

collector offers a clear storage allocation and recovering

unutilized memory instead of deallocating memory through

manual action. It facilitate developers to make sure the

integrity of the program throughout its execution and

avoids any JVM crash attributable to incorrect releasing of

memory.

 Type-safe reference casting in JVM

Whenever you utilize an object reference, the JVM

monitors you. If you are attempting to forged a reference to

a distinct type, it'll build the forged invalid.

2. JAVASECURITYAARCHITECTURE
Java security model can be explained in Fig. 1 [5]. Both Java byte

code and applets (observed as un trusted byte code) must pass the

byte code verifier. Then the class loader is invoked to regulate how

and when applets can load classes. A class loader also imposes

namespace partition, and it ensures that one applet cannot affect the

rest of the runtime environment. Finally,the security manager is

employed to perform run-time verification of all questionable

“dangerous methods”, which are those methods that request file I/O,

network access, or those that want to define a new class loader.

In the remainder of this section, we'll shortly describe 3

components of the Java security model, that square measure byte

code verifier, class loader, and security manager.

2.1. Java BytecodeVerifier

Java compiler compiles source programs into bytecodes, and a

truthful compiler guarantees that Java source code doesn't interfere

the security rules. At runtime, a compiled code portion will return

from anyplace on net, and it's anonymous if the code fragment

comes from a trustworthy compiler or not. So, much the Java

runtime merely doesn't trust the incoming code and instead subjects

it to a sequence of tests by bytecode protagonist.

The bytecode verifier may be a mini theorem prover, that verifies

that the language ground rules are valued. It checks the code to

verify that [5]:

 Compiled code is formatted correctly.

 Internal stacks will not over flow or underflow.

 No "illegal" data conversions will happen (i.e., the verifier

will not permit integers to serve as pointers). This

safeguards that variables will not be granted entree to

restricted memory areas.

 Byte-code instructions will have appropriately-typed

parameters.

 All class member accesses are "legal". For instance,

an object's private data must always remain private.

The bytecode verifier assurances that the code passed to the

Java interpreter is in a fit state to be executed and can run

without f-ear of breaking the Java interpreter.

2.2. Java Class Loader

The class loader is outlined in Java by an abstract class,

ClassLoader. As an interface, it will be used to describe a

rule for loading Java classes into the runtime environment.

functions of the class loader are [5]:

• It fetches the applet's code from the remote.

• Class Loader creates and imposes a namespace

hierarchy. one amongst its additional necessary

functions is to make sure that running

application program doesn't replace system-

level components inside the runtime

environment. particularly, it prevents applets

from making their own category loader.

• It stops applets from invoking the method, that

is an element of the system's category loader.

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

30

IJSER © 2016
http://www.ijser.org

IJSER

Java Runtime environment (i.e., a running JVM), permits

multiple ClassLoaders, every with its own namespace, to

move at the same time, and namespaces enable the JVM to

cluster classes supported wherever they originate (e.g., native

or remote). This delineates and controls what alternative

parts of the runtime setting the application program will

access and modify. additionally, by putting boundaries on the

namespace, the category loader prevents untrusted applets

from accessing alternative machine resources (e.g., native

files).

2.3. Java Security Manager

The Security Manager contains variety of ways that are planned to

be referred to as to visualize specific kinds of actions. the security

Manager class itself isn't supposed to be used directly, instead, it's

supposed to be subclassed and put in because the System Security

Manager. The subclasses Security Manager are often wont to

instantiate the required security policy.

The Security Manager delivers a awfully versatile and powerful

mechanism for not absolutely permitting access to resources. the

security Manager methods that check access are passed arguments

that are necessary to implement conditional access policies,

furthermore as having the potential to visualize the execution stack

to see if the code has been referred to as by native or downloaded

code. a number of the security Manager’s responsibilities embody

[5]:

• Handling all socket operations.

• Safeguarding access to protected resources together

with files, personal data, etc.

• Controlling the creation of, and every one access to,

OS programs and processes.

• Preventing the installation of new ClassLoaders.

• Maintaining thread integrity.

• Controlling access to Java packages (i.e., groups of

classes).

To ensure compliance, all methods that are a part of the essential

Java libraries (i.e., those equipped by Sun) consult the security

Manager before executing any dangerous operations, like network

access and file I/O request.

Our objective of trusting execution of untrusted comes on a JVM

obliges answers for numerous problems, for instance, characterizing

the conduct of JVM execution, characterizing safe execution on the

JVM, and demonstrating that perceived comes execute firmly on

JVM.

3.CONCLUSION

Java security model provides us an excellent test bed for

security verification. Presently, researchers are thinking

about describing the formal semantics of Java byte code

instructions and trying to prove their reliability. Verifying

byte code by model checking is one of those works and it’s

different from the traditional theorem proving approach.

Because there are many existing models checking tools,

such as SMV, it gives us a chance to concentrate on creating

the model for byte code, and let the model checker do the

rest things,likesecurity verification.

4. ACKNOWLEDGEMENTS

We would like to thanks to our Vice chancellor Prof. Dr.

R.K.Chauhan, Pro Vice chancellor Prof . Dr. G.V.Ramaraju

Lingaya’s university Faridabad, and faculty members of

school of computer science for valuable guidance and support

for writing this paper.

5.REFERENCES

[1] LiGong.Javasecurity:presentandnearuture,IEEEMicro,17(3):14-

19,May/June1997.

[2] Li Gong. Going beyond Sandbox: an overview of the new

security architecture in the Java Development kit 1.2, In

Proceedings of the USENIX Symposium on Internet

Technologies and Systems , Monterey, California,

December1997

[3] Joseph A.Bank.Java security,PMG group at MIT

LCS,December,1995,http://swissnet.ai.mit.edu/~jbank/javapaper/java

paper.html

[4] Rich Levin. Security grows up: the Java 2 platform security

model,October1998,http://www.javasoft.com/features/1998/11/jdk.se

curity.html

[5] Executive Summary Secure computing with Java:now and the

future,1998,http://www.javasoft.com/marketing/collateral/security.htm

[6] http://www.cygnet-infotech.com/blog/key-features-that-make-

java-more-secure-than-other-languages

[7]https://www.researchgate.net/publication/2644514_Java_Security

Model_and_Java_Security_Model_and_Bytecode_Verification_

Bytecode_Verification

[8] Gosling, James; Joy, Bill; Steele, Guy; Bracha, Gilad; Buckley,

Alex (2014). The Java® Language Specification (PDF) (Java SE

8 ed.).

[9]Gosling, James; Joy, Bill; Steele, Guy L., Jr.; Bracha,

Gilad (2005). The Java Language Specification (3rd ed.).

Addison-Wesley. ISBN 0-321-24678-0.

[10] Lindholm, Tim; Yellin, Frank (1999). The Java Virtual Machine

Specification (2nd ed.). Addison-Wesley. ISBN 0-201-43294-3.

International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016
ISSN 2229-5518

31

IJSER © 2016
http://www.ijser.org

IJSER

http://swissnet.ai.mit.edu/~jbank/javapaper/javapaper.html
http://swissnet.ai.mit.edu/~jbank/javapaper/javapaper.html
http://www.javasoft.com/features/1998/11/jdk.security.html
http://www.javasoft.com/features/1998/11/jdk.security.html
https://www.researchgate.net/publication/2644514_Java_SecurityModel_and_Java_Security_Model_and_Bytecode_Verification_Bytecode_Verification
https://www.researchgate.net/publication/2644514_Java_SecurityModel_and_Java_Security_Model_and_Bytecode_Verification_Bytecode_Verification
https://www.researchgate.net/publication/2644514_Java_SecurityModel_and_Java_Security_Model_and_Bytecode_Verification_Bytecode_Verification
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://en.wikipedia.org/wiki/Bill_Joy
https://en.wikipedia.org/wiki/Guy_L._Steele,_Jr.
https://en.wikipedia.org/wiki/Gilad_Bracha
https://en.wikipedia.org/wiki/Gilad_Bracha
http://java.sun.com/docs/books/jls/index.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-321-24678-0
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-43294-3

